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Statistical fluid dynamics identifies a functional of the fluid energy spectrum that 
plays the role of Boltzmann’s entropy for fluids. Through a series of two-dimensional 
flow simulations we confirm the theoretical predictions for the behaviour of this 
entropy functional. This includes a demonstration of Loschmidt’s paradox and an 
examination of the effects of Rossby waves and viscosity on the behaviour of the 
entropy. 

1. Introduction 
Inviscid spectrally truncated flow represents a conservative system for which the 

methods of canonical statistical mechanics apply. In  particular, a canonical 
equilibrium spectrum determined solely by the dynamical invariants of the system 
can be defined (Kraichnan 1967; Basdevant & Sadourny 1975; Salmon, Holloway 
& Hendershott 1976). It was first pointed out by Cook (1974) that for two-dimensional, 
incompressible, homogeneous flow the Markovian equations for the statistical 
evolution of the energy spectrum imply monotonic relaxation to canonical equilibrium 
(i.e. an H-theorem). Subsequently it has been shown that this result generalizes to 
all macroscopic fluid systems (Montgomery 1976 ; Carnevale 1979 ; Carnevale, Frisch 
& Salmon 1981). The theoretical importance of this work is that i t  applies to all 
Liouvillian systems independent of a Hamiltonian formulation, thus extending the 
use of H-theorems (Carnevale et al. 1981). Here we investigate how these results are 
manifested in simulations of two-dimensional flow. 

The quantity that plays the central role in these studies is the functional 

+Xln k V,, 

where u k  is the ensemble average modal energy in wavevector mode k. Specifically, 
u k  is given by 

uk <vk.vk*) = k2<l@kI2>, (1.2) 

where $k is the Fourier-transformed stream function, and the angle brackets 
represent an average over an ensemble of initial states. 

That a functional of the form S can be considered the entropy of macroscopic fluid 
motions was first suggested by Betchov (1964). He argues that this S is a measure 
of the information necessary to specify the turbulent motion of a fluid with spectrum 
uk. In a more general formulation Carnevale et al. (1981) have demonstrated a 
connection between the usual Gibbs prescription for information and the functional 
S. In the present context the connection can be briefly described as follows. Consider 
an ensemble of incompressible, two-dimensional flows with probability density 
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P({$k}),  where {$k} includes all independent wavevector amplitudes. The Gibbs 
prescription for the amount of information contained in the distribution P({$k}) is 

H,(P)  = j P l n  P, 

with the integral taken over all elements of {$k} (cf. Tolman 1938). If P is varied over 
all possible distributions with the same spectrum u k ,  then the minimum value that 
HG(P) assumes is, up to additive constants, just 

minH,(P) = -&Z In u k .  
k 

In  this sense then this lower bound on H G  is interpreted as the amount of information 
contained in a knowledge or specification of the spectrum u k  alone. Thinking of 
entropy as a lack of information leads to the prescription (1.1). For details and further 
discussion see the above references. 

For inviscid two-dimensional flow there are two quadratic dynamical invariants : 
the total energy 

and the total enstrophy 

ET = gx k21$k12, (1.3) 

= $x k41$kI2. (1.4) 

k 

k 

These constraints determine the form of the canonical equilibrium spectrum 
(Kraichnan 1967) 

1 
UP = - 9  (1.5) 

where a and b are constants defined by the values of ET and 2,. It can be shown 
that the maximum value that S can have for given E T  and 2, is just that value 
computed with the equilibrium spectrum (1.5) (Carnevale et al. 1981). 

It has been demonstrated previously (Cook 1974; Carnevale et al. 1981) that 
second-order Markovian closure theory implies that  S evolves according to 

All summations include only wavcvectors of magnitude less than or equal to finite 
k,,,. ekpq is a positive function called the triad relaxation time (Rose & Sulem 1978) 
which can be modelled in several ways. For inviscid spectrally truncated flow we have 
dS/dt 2 0, and dS/dt = 0 if and only if Uk is given by (1.5). That is, for inviscid 
truncated flow the entropy is stationary only in the state of canonical equilibrium 
and otherwise increases monotonically. 

Numerical simulation of inviscid two-dimensional flow exhibits relaxation toward 
the canonical spectrum (1.5) (Fox & Orszag 1973; Seyler et al. 1975). During such 
a simulation we follow the evolution of a single realization entropy defined by 

and we compare its behaviour with the theoretical prediction for Se based on an 
ensemble. The results on inviscid equilibrium in $2 emphasize the close correspondence 
between canonical statistical prediction and inviscid simulation. In  $3 the statistical 
nature of the theory is further emphasized by a demonstration of Loschmidt's 
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paradox, which strikingly displays the invariance of inviscid dynamics under time 
reversal. All this is in the same spirit as simulations of particle dynamics (cf. Orban 
& Bellmans 1967). 

In  §§4 and 5 the effects of Rossby-wave propagation and viscosity on the evolution 
of S, are compared qualitatively with the predictions of closure theory, and 
quantitatively with canonical statistics. 

2. Inviscid two-dimensional flow 
Our simulations are produced with a de-aliased spectral code that conserves energy 

and enstrophy very accurately. Wavevectors have integral components, and we apply 
a circular truncation at wavenumber k,,, = 120. The total number of modes 
simulated is f = 45224. 

The initial state for these simulations is randomly generated, with approximately 
equal energy in each unit wavenumber band for 69 < k < 100; that is 

E ( k )  G 4 p2(+J2 = const (69 < k < 100). 
k < p < k+l 

The total energy is ET x 0.3434 and the total enstrophy is ZT x 2449 in the arbitrary 
units of the simulation. 

For these values of energy and enstrophy the corresponding canonical equilibrium 
spectrum is approximate energy equipartition (cf. Fox & Orszag 1973): 

1 rrk 
UgQ x - or E ( k )  % -, 

a U 

where 1/u  = 2ET/f .  Thus the equilibrium entropy is 

SeQ x - u l n a  x -250882. (2.2) 

7 , (k )  = (k3E(k) ) - i .  (2.3) 

It is useful to  introduce the 'local' eddy turnover time 

The smallest 7, in these simulations is found a t  high k and is roughly 001 (again in 
these arbitrary units). 

Figures 1 4  show various stages in the evolution of the energy spectrum. Notice 
in figure 3 a t  time t = 0 2  (or after roughly 20 of the fast eddy turnover times) that  
most of the high-wavenumber spectrum is near its equilibrium form, and this actually 
accounts for the bulk of the simulated modes. I n  figure 4 a t  time t = 1.5 many more 
of the wavenumber bands have equilibrated. The few modes still far from equilibrium 
( k  5 5) at t = 1.5 will take considerably longer to relax (cf. Fox & Orszag 1973). 

Figure 5 shows the evolution of S, in this simulation. While the system is far from 
equilibrium S, increases rapidly and monotonically, with significant change occurring 
in periods of the order of the fast eddy turnover timescale. As the higher-wavenumber 
modes begin to  equilibrate, this increase slows rapidly. S, continues to increase 
monotonically until around t = 014, after which time minor fluctuations, which are 
imperceptible on the scale of figure 5, appear. On the enlarged scale of figure 6 we 
display these fluctuations for 0 2  < t < 1.5. The time average of S, over the timespan 
of figure 6 is 

(2.4) 

and the fluctuations are less than 008% of this value. 

Re = - 263 985, 
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FIGURE 1. Randomly generated initial energy spectrum. 
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FIGURE 3. Energy spectrum in inviscid simulation at time f = 0 2 .  
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FIGURE 4. Energy spectrum in inviscid simulation at time f = 1.5. 
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To compare statistical theory with experiment we first remark that Seq given by 
(2.2) is based on an ensemble-average energy spectrum Ugq = (kzl$/lz)eq, and we 
cannot then expect 

8, = iZ In k21hl z ,  
k 

which is based on a single realization of $k, to achieve the value Seq, no matter how 
long the simulation is run. The value of S, when near equilibrium should properly 
be compared with the expectation value   AS',)^^. The equilibrium average is taken 
with the canonical distribution 

p($k) exp {-Z:k21$k12a), (2.5) 
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FIGURE 6. Fluctuations in entropy in near-equilibrium state. The time average ge = -263985; the 
predicted standard deviation (T = (((L7e-(/3e))z))j = 136. 

where again l / a  = 2E,/f .  The result is 

( Se)eq = s e q  + u y  

= -263934, (2.6) 

(y is Euler’s constant). Note that (S,)cq compares favourably with the time average 
g, computed from the simulation. That Re is only 0-02 yo less than (Se),q can easily 
be because of the fact that  even a t  t = 1.5 the energy in the lower wavenumbers still 
has not equilibrated. If it  were feasible to run the simulation to much longer times, 
then assuming ergodic behaviour (cf. Basdevant & Sadourny 1975) we would expect 
a later time average of S, to  come even closer to (S,)eq. Furthermore, canonical 
statistics yield an estimate of the size of the fluctuations in S,. Computing the 
standard deviation based on the distribution (2.5) we obtain 

= (((Se-(Se))’))4 x 136. (2.7) 

I n  figure 6 we see that ge +_ u does indeed give a good fit to the fluctuation range. 
For clarity and emphasis we repeat these results in table 1. 

3. Loschmidt’s paradox 
The accuracy of the statistical predictions is remarkable when we emphasize that 

we are comparing them to a single realization, not an ensemble. We could certainly 
imagine initial conditions for which the entropy would behave contrary to the 
statistical predictions by displaying so-called antikinetic behaviour. For example, a t  
any point in the evolution we could create an antikinetic state by reversing the 
velocity field. Since the inviscid dynamics are time-reversible the evolution of this 
new state would proceed not toward equilibrium but ‘backwards’ towards the initial 
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Quantity Definition Value 
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FIGURE 7. Demonstration of Loschmidt’s paradox. The Loschmidt demon reverses the velocity field. 
In simulation represented by short (long) dashed curve the demon acts at t = 005 ( t  = 010). 

state with reversed velocities. Thus the entropy must decrease monotonically until 
it  achieves its initial value; subsequent evolution should then again show evolution 
of S, towards equilibrium. The apparent disparity between statistical theory and this 
antikinetic behaviour is called Loschmidt’s paradox (Cercignani 1975). It is resolved 
by realizing that the H-theorem is a statistical statement and antikinetic states form 
a set of measure zero when compared with all possible states with the same energy 
spectrum. 

In figure 7 we provide a demonstration of Loschmidt’s paradox. At times t = 005 
and again at t = 0.10 in the simulation of $2, we conjure up a demon that reverses 
the velocity field, and then we proceed simulating forward in time. The result is just 
as time-reversibility would suggest. In the first stage after the demon intervenes the 
history of S, is reproduced with six-significant-figure accuracy. This is a very 
encouraging indication of the precision of these simulations. Subsequent evolution 
shows S, increasing towards its expectation value, again with fluctuations in the 
predicted noise range. 
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4. Inviscid homogeneous flow on the P-plane 
Flow on a /?-plane is a flat-geometry model for flow on a rotating sphere (Rhines 

1975). The presence of a variable Coriolis force permits the propagation of Rossby 
waves with frequency wk = - /?kz /k2  (where /? is the gradient of the Coriolis force). 
Some simple theoretical arguments suggest that  the presence of these wave modes 
will retard the transfer of energy from wavenumbers greater than the Rhines 
wavenumber kp = (/?/2V)4, where V is an r.m.s. velocity, to lower wavenumbers 
(Rhines 1975). Furthermore a tendency toward anisotropic (zonal) flow is expected 
while the system is far from equilibrium (Rhines 1975; Holloway & Hendershott 
1977), although the ultimate equilibrium spectrum must still be the isotropic 
spectrum ( 1 4 ,  because even on the /?-plane the quadratic invariants are still ET and 
2, (Carnevale et al. 1981). 

In  the Markovian closure equations for homogeneous flow the effect of wave 
propagation enters only implicitly through the values of the triad relaxation time 
6kps (Holloway & Hendershott 1977; Legras 1980; Carnevale & Martin 1982). For 
example, a convenient expression for 6kpq in pure two-dimensional inviscid flow is 
the eddy-damped quasi-normal model 

where pk is the eddy turnover rate. For P-plane flow this must be modified to 

(4.2) 
p k  +pa 

(wk + O p  + wq)2+ (pk + p p  + p k ) 2  ’ 
ekpq = 

(Holloway & Hendershott 1977). This suggests that  for a given energy spectrum the 
energy transfer rate is smaller and more anisotropic the larger the value of /?. 
Equation (1.6) implies that dS/dt 2 0 also on the inviscid /?-plane, and that we must 
expect a slower rate of equilibration thc larger the value of P. 

We have performed inviscid simulations with values of /? = 500 and 1000 using the 
same initial conditions as in 52. These values of /? correspond to  Rhines wavenumbers 
of kp  = 17 and 25 respectively. Figure 8 demonstrates that the behaviour of S, is 
qualitatively as anticipated. The strong values of p slow down the approach to 
equilibiium. Figure 9, when compared with figure 3, clearly shows the retarded 
transfer of energy through the soft barrier at k j .  A measure of the anisotropic 
tendencies is v i - v i  = & ( k i -  ki)1+,J2. For the B = 1000 simulation ( t  = 0 to t = 0.2) 
this measure, initially small and negative, goes positive and increases in size by an 
order of magnitude, clearly showing the far-from-equilibrium tendency towards zonal 
motion. 

5. Viscous decay 
According to (1.6) there are two competing effects in the evolution of S for viscous 

flow. Viscous decay contributes the negative constant - VC k2, which in our 
simulations is - 4325 519928). From a statistical-information standpoint the 
negative sign agrees with intuition, since viscosity drives all systems towards the 
same state of zero motion and hence tends to  increase our information about the state 
of the system. Nonlinear transfer contributes the positive term. This term is large for 
states far from equilibrium and vanishes for zero motion. 

If we perform a simulation of viscous decay with an initial state sufficiently far 



Evolution of two-dimensional turbulence 151 

-2 

h 

P -2 
v 
x a 
2 
+d 

W 

-2 

-2 

0-plane 
I I I 1 I I I 1 

I I I I I I I I I 
0.07 0.10 0.13 

Time 

FIQURE 8. Entropy evolution on the 3-plane with value of /? = 500, 1000. 
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FIGURE 10. Entropy evolution in viscous simulation with values of viscosity v = 000007, 00007, 
corresponding to initial Reynolds numbers R = 140, 14 respectively. 

from equilibrium so that nonlinear transfer dominates, then the early evolution will 
be characterized by increasing S,. A transition to decreasing S, will eventually occur. 
The rate a t  which S,  then decreases will depend on the shape of the spectrum. Using 
an initial spectrum such as in figure 1 that has only high wavenumbers excited we 
would expect to see a transition to  linear decay of S, representing the exponential 
decay of the high-wavenumber energy 

S 2 gzln  Qexp(-2vk2t) = 4Zln Vk-tvCk2. 
k k k 

I n  such a linear decay regime the decay rate would approximate 

dS/dt x - V  Z k2.  
k 4 kmax 

Whether such a linear decay regime will be observed depends on the shape of the 
spectrum and the Reynolds number of the flow. I n  figure 10 we show the results of 
two simulations using the initial conditions represented in figure 1. The values of the 
viscosity are v = 0.00007 and v = 0.0007, corresponding to  viscous decay times 
r,  = 1 / v k 2 ,  satisfying 1 < 7, and 0 1  6 7, rcspectively. The corresponding initial 
Taylor-based Reynolds numbers are R 2 140 and 14, respectively. The figure shows 
a sharper earlier transition to decay for the flow with the large viscosity, v = 0.0007, 
and for this viscosity a nearly linear decay with rate -221000 a t  t = 019, just short 
of the pure viscous-decay rate -227864. 

6. Discussion 
We have presented a series of results that display the behaviour of the functional 

S, = gZ In k21$kI2 

in two-dimensional simulation. These confirm that S, plays a role in two-dimensional 
flow that is directly analogous to the role played by Boltzmann’s entropy for particle 

k 
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systems. We have emphasized that the character of the near-equilibrium behaviour 
of S, can be accurately predicted by simple calculations based on canonical statistics. 

The value of S, relative t o  its maximum and its rate of change provides a 
convenient characterization of the degree to  which an  inviscid simulation has 
proceeded and the extent to which equilibrium statistical mechanics applies. Of 
course, inviscid spectrally truncated simulation is far from the interesting physics of 
forced viscid turbulence; and so the applicability of these results a t  present seems 
limited to special situations. We conjecture that the concepts employed here can be 
usefully extended t o  certain more-realistic models. This should be possible in 
investigating phenomena for which viscosity does not play the key role. I n  particular 
this may be the case for some of the effects found in simulation of viscid flow over 
irregular topography (cf. Holloway 1978 ; Frederiksen & Sawford 1980 ; Carnevale 
et al. 1981). Such simulations show development of correlations between flow and 
topography on timescales short compared with viscous-decay times. Perhaps this can 
be meaningfully interpreted in terms of entropy maximization. A further possible 
extension may be found of use in classical predictability studies as suggested by 
Carnevale & Holloway (1982). 
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